1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
| df.columns
df.columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'name'] df.head()
df['open']
df[['open','close']]
type(df['open'])
type(df[['open','close']])
df.iloc[0]
df.loc[0]
df2 = pd.read_csv('sbux.csv', index_col='date') df2.head()
df2.loc['2013-02-08']
type(df2.loc['2013-02-08'])
df[df['open']>64]
df[df['name']!='SBUX']
df['name']!='SBUX'
type(df['name']!='SBUX')
import numpy as np A = np.arange(10) A
A[A%2==0]
df.values [ ]
df.values
A = df[['open', 'close']].values A
[ ]
開始使用 AI 編寫或生成程式碼。 Loading in data [ ] import pandas as pd !wget https://raw.githubusercontent.com/lazyprogrammer/machine_learning_examples/master/tf2.0/sbux.csv --2024-03-18 07:20:43-- https://raw.githubusercontent.com/lazyprogrammer/machine_learning_examples/master/tf2.0/sbux.csv Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.108.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 61896 (60K) [text/plain] Saving to: ‘sbux.csv’
sbux.csv 100%[===================>] 60.45K --.-KB/s in 0.001s
2024-03-18 07:20:43 (53.6 MB/s) - ‘sbux.csv’ saved [61896/61896]
[ ] df = pd.read_csv('sbux.csv')
df2 = pd.read_csv('https://raw.githubusercontent.com/lazyprogrammer/machine_learning_examples/master/tf2.0/sbux.csv') [ ] type(df)
[ ]
!head sbux.csv date,open,high,low,close,volume,Name 2013-02-08,27.92,28.325,27.92,28.185,7146296,SBUX 2013-02-11,28.26,28.26,27.93,28.07,5457354,SBUX 2013-02-12,28.0,28.275,27.975,28.13,8665592,SBUX 2013-02-13,28.23,28.23,27.75,27.915,7022056,SBUX 2013-02-14,27.765,27.905,27.675,27.775,8899188,SBUX 2013-02-15,27.805,27.85,27.085,27.17,18195730,SBUX 2013-02-19,27.18,27.305,27.01,27.225,11760912,SBUX 2013-02-20,27.3,27.42,26.59,26.655,12472506,SBUX 2013-02-21,26.535,26.82,26.26,26.675,13896450,SBUX [ ]
df.head()
[ ]
df.head(10)
[ ]
df.tail()
[ ]
df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1259 entries, 0 to 1258 Data columns (total 7 columns): --- ------ -------------- ----- 0 date 1259 non-null object 1 open 1259 non-null float64 2 high 1259 non-null float64 3 low 1259 non-null float64 4 close 1259 non-null float64 5 volume 1259 non-null int64 6 Name 1259 non-null object dtypes: float64(4), int64(1), object(2) memory usage: 69.0+ KB Selecting Rows and Columns [ ]
df.columns Index(['date', 'open', 'high', 'low', 'close', 'volume', 'Name'], dtype='object') [ ]
df.columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'name'] df.head()
[ ]
df['open'] 0 27.920 1 28.260 2 28.000 3 28.230 4 27.765 ... 1254 56.280 1255 55.900 1256 55.530 1257 53.685 1258 55.080 Name: open, Length: 1259, dtype: float64 [ ]
df[['open','close']]
[ ]
type(df['open'])
[ ] type(df[['open','close']])
[ ]
df.iloc[0] date 2013-02-08 open 27.92 high 28.325 low 27.92 close 28.185 volume 7146296 name SBUX Name: 0, dtype: object [ ] df.loc[0] date 2013-02-08 open 27.92 high 28.325 low 27.92 close 28.185 volume 7146296 name SBUX Name: 0, dtype: object [ ]
df2 = pd.read_csv('sbux.csv', index_col='date') [ ] df2.head()
[ ] df2.loc['2013-02-08'] open 27.92 high 28.325 low 27.92 close 28.185 volume 7146296 Name SBUX Name: 2013-02-08, dtype: object [ ] type(df2.loc['2013-02-08'])
[ ]
df[df['open']>64]
[ ] df[df['name']!='SBUX']
[ ] df['name']!='SBUX' 0 False 1 False 2 False 3 False 4 False ... 1254 False 1255 False 1256 False 1257 False 1258 False Name: name, Length: 1259, dtype: bool [ ] type(df['name']!='SBUX')
[ ]
import numpy as np A = np.arange(10) A array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) [ ] A[A%2==0] array([0, 2, 4, 6, 8]) [ ]
df.values
A = df[['open', 'close']].values A
type(A)
smalldf= df[['open', 'close']] smalldf.to_csv('output.csv') !head output.csv ] !head output.csv
smalldf.to_csv('output.csv', index=False) !head output.csv
|