Deep Learning - Recurrent Neural Networks in Python
說明
名詞
Recurrent neural network(循環神經網路 RNNs) :
Linear and Logistic Regression(線性邏輯回歸)
Backpropagation(反向傳播)
TensorFlow 2
Time series forecasting(時間序列預測)
Text classification(link sentiment analysis) 文字分類(情緒分析)
image recognition (圖像辨識)
LSTMs
Basic
Classification 分類
Regression 回歸
Neurons 神經元
Scikit-learn : 是用於Python程式語言的自由軟體機器學習庫
Numpy
Matrix arithmetic
Tensor(arrays)
1-D tensor(vector), 2-D tensoer(matrix)
Arithmetic:+,-,,/
Matrix mutiply == dot/inner product(np.dot)
Element-wise multiply()
Matplotlib
Line charts
Scatterplots
Pandas
Loading in tabular data
Scipy
Is like a power version od Numpy(statistics, optimization, alinear algebra, signal processing)
Numpy is lower-level:adding, multiplying
Scikit-Learn
It’s about the concept behind using it
Classicfication and regression
MAchine learning as geometry rather than magic
Shape of data(X and Y)
The Step of a Machine Learning Script
- Load in the data
- X and Y
Typically use PAndas usless the data it too complex
- X and Y
- Slipt train/test sets(sometimes)
- Sometimes “test” and “validation” are used interchangeably, and the “true test set” is sometiming else - don’t get frazzled over this
- Build a Model
- OOP(object oriented programing)
- TensorFlow 2.0 standard is Keras API, very similar to Sciki-Learn
- Fit the model(gradient descent)
- model.fit(X,Y)
- Evaluate the model
- Make predictions
- model.predict(X)
Google Colab
setting
CPU, GPU
執行階段 –> 變更執行階段類型
uploae/download notebook file
檔案 –> 上傳筆記本
檔案 –> 下載
command
1 | # runs shell |
magic command
1 | # show magic command |
Upload
Using wget
1 | # download the data from a URL |
Using tf.keras
1 | # use keras get_file to download the auto MPG dataset |
Upload the file yourself
1 | # another method: upload your own file |
1 | # fake_util.py |
Upload the file yourself
1 | # Access files from your Google Drive |